rel-($1 R, 4 S, 5 R, 8 S)$-1,4:5,8-Diepoxy-1,4,5,8-tetrahydro-9,10-dimethylphenanthrene

By Franz H. Kohnke,* John P. Mathias \dagger and J. Fraser Stoddart \ddagger
Department of Chemistry, The University, Sheffield S3 7HF, England
and Alexandra M. Z. Slawin and David J. Williams
Department of Chemistry, Imperial College, London SW7 2AY, England

(Received 1 March 1991; accepted 2 August 1991)

Abstract

C}_{16} \mathrm{H}_{14} \mathrm{O}_{2}, M_{r}=238.3\), monoclinic, $P 2_{1} / n$, $a=8.134$ (2), $b=8.877$ (3), $c=16.681$ (4) $\AA, \quad \beta=$ 90.77 (2) ${ }^{\circ}, \quad V=1204 \AA^{3}, \quad Z=4, D_{x}=1.31 \mathrm{Mg} \mathrm{m}^{-3}$, $\mathrm{Cu} \mathrm{K} \alpha$ radiation, $\lambda=1.54178 \AA, \mu=0.65 \mathrm{~mm}^{-1}$, $F(000)=504$, room temperature, $R=0.049$ for 1478 observed reflections with $\left|F_{o}\right|>3 \boldsymbol{\sigma}\left(\left|F_{o}\right|\right)$. Enantiomerically related pairs of molecules of the title compound pack in the crystal so that an olefinic H atom in each interacts electrostatically with an O atom in the endoxide bridge of the other.

Introduction. Our interest (Stoddart, 1988a,b, 1989; Ellwood, Mathias, Stoddart \& Kohnke, 1988; Kohnke \& Stoddart, 1989; Kohnke, Mathias \& Stoddart, 1989a,b) in the use of a repetitive sequence of trebly diastereoselective Diels-Alder reactions to synthesise polyacene and cyclacene derivatives has led us to identify syn-1,4:5,8-diepoxy-1,4,5,8-tetra-hydro-9,10-dimethylphenanthrene (1) and its anti isomer $(\pm)-(2)$ as useful bisdienophilic building blocks. Previously, it has been claimed (Hart, Shamouilian \& Takehira, 1981; Hart \& Shamouilian, 1981) that the lithiation of 4,5 -dibromo-3,6-diiodo-oxylene with two molar equivalents of n-butyllithium, followed by trapping of the bisaryne equivalent generated in situ with two equivalents of furan affords only one diastereoisomeric 2:1 adduct. On repeating this reaction, we obtained two diastereoisomers which could be separated by column chromatography on silica gel using chloroform containing 1% propan- 2 -ol as the eluant, but could not assign to them unambiguously their relative configurations by NMR (${ }^{1} \mathrm{H}$ or ${ }^{13} \mathrm{C}$) spectroscopic analysis. Here, we report the full crystallographic analysis of the chromatographically more mobile

[^0]isomer, which is shown to be a racemic mixture $(\pm)-(2)$ in which the endoxide bridges have the anti configuration.

(1)

(3)

(\pm)-(2)

(4)

Experimental. Treatment of 4,5-dibromo-3,6-diodo-o-xylene with 2.2 molar equivalents of n-butyllithium at 250 K , followed by trapping of the bisaryne equivalent in situ with 2.0 molar equivalents of furan, afforded an equimolar mixture of the diastereoisomeric bisdienophiles (1) and (2). Compound (2) was obtained as a crystalline sample following fractional crystallization from toluene. Single crystals (found: $\mathrm{C}, 80.3 ; \mathrm{H}, 5.90 \% . \mathrm{C}_{16} \mathrm{H}_{14} \mathrm{O}_{2}$ requires C , $80.6 ; \mathrm{H}, 5.90 \%$) of the anti isomer (2), suitable for X-ray crystallography, were grown at room temperature by vapour diffusion of pentane into a deuteriochloroform solution of (2) and had m.p. 437-439 K. Crystal size $0.33 \times 0.50 \times 0.67 \mathrm{~mm}$. Refined unit-cell parameters obtained from setting angles of 18 reflections with $10.6 \leq 2 \theta \leq 32.2^{\circ}$. Nicolet $R 3 m$ diffractometer. 1877 measured, 1620 independent ($R_{\text {int }}=$ 0.038) reflections $\left(2 \theta \leq 116^{\circ}\right), \quad \mathrm{Cu} K \alpha$ radiation (graphite monochromator), ω scan. 1478 [$\left|F_{o}\right\rangle$ $\left.3 \sigma\left(\left|F_{o}\right|\right)\right]$ considered observed, index range $h-8 / 8$, $k 0 / 9, l 0 / 18$: two check reflections measured every 50 reflections, no significant change in net counts; Lorentz and polarization corrections, no absorption correction. Structure solved by direct methods. The non- H atoms were refined anisotropically. All the H
atoms were located from a ΔF map. The geometries of those on $C(2), C(3), C(8)$ and $C(9)$ were idealized, $\mathrm{C}-\mathrm{H}=0.96 \AA$, assigned isotropic thermal parameters, $U(\mathrm{H})=1.2 U_{\mathrm{eq}}(\mathrm{C})$, and allowed to ride on their parent C atoms. Those on $\mathrm{C}(1), \mathrm{C}(4), \mathrm{C}(7)$ and $\mathrm{C}(10)$ were refined isotropically subject to a $\mathrm{C}-\mathrm{H}$ distance constraint. The methyl groups were refined as idealized rigid bodies. Refinement using F magnitudes by block-cascade full-matrix least squares; $R=0.049$; $w R=0.059\left[w^{-1}=\sigma^{2}(F)+0.00043 F^{2}\right] . S=2.68 ; 186$ refined parameters; $(\Delta / \sigma)_{\max }=0.037$; residual electron density in final difference map within 0.16 and -0.21 e \AA^{-3}; atomic scattering factors and dispersion corrections from International Tables for X-ray Crystallography (1974, Vol. IV). Computations carried out on an Eclipse S140 computer using the SHELXTL program system (Sheldrick, 1985).

Discussion. The structure of (2) with atomic numbering scheme is shown in Fig. 1. Table 1* lists the fractional atomic coordinates of the non-H atoms and Table 2 the bond lengths and angles.

The molecule has the anti configuration (2) possessing non-crystallographic C_{2} symmetry. However in the crystal, with space group $P 2_{1} / n$ there are equal numbers of $(+)$ and $(-)$ molecules. Clearly, if $(\pm)-(2)$ can be resolved, then this bisdienophilic building block could be used in repetitive trebly diastereoselective Diels-Alder reactions for imparting chirality to a homogeneous series of oligomeric adducts. The combination of the steric interaction between the ortho methyl substituents

[^1]Fig. 1. Ball-and-stick representation of the structure of (2) showing the atomic numbering scheme.

Table 1. Atom coordinates $\left(\times 10^{4}\right)$ and temperature factors $\left(\AA^{2} \times 10^{3}\right)$ with e.s.d.'s in parentheses

	x	y	z	$U_{\text {eq }}$
O(1)	5003 (2)	1589 (2)	3824 (1)	53 (1)*
C(1)	6394 (3)	824 (3)	4184 (1)	47 (1)*
C(1a)	6995 (3)	2064 (2)	4754 (1)	37 (1)*
C(2)	7572 (3)	815 (3)	3481 (1)	58 (1)*
C(3)	7285 (3)	2075 (3)	3082 (1)	58 (1)*
C(4)	5931 (3)	2884 (3)	3539 (1)	46 (1)*
C(4a)	6710 (2)	3417 (2)	4329 (1)	36 (1)*
C(5)	7129 (2)	4818 (2)	4615 (1)	36 (1)*
C(6)	7909 (2)	4902 (2)	5394 (1)	36 (1)*
C(6a)	8134 (2)	3579 (2)	5805 (1)	36 (1)*
C(7)	8801 (3)	3224 (2)	6651 (1)	46 (1)*
O(7)	9554 (2)	1768 (2)	6505 (1)	59 (1)*
C(8)	7321 (3)	2740 (3)	7133 (1)	54 (1)*
C(9)	6879 (3)	1407 (3)	6850 (1)	58 (1)*
C(10)	8086 (3)	1061 (2)	6184 (1)	51 (1)*
C(10a)	7687 (2)	2148 (2)	5498 (1)	37 (1)*
C(11)	6773 (3)	6227 (3)	4140 (1)	53 (1)*
C(12)	8448 (3)	6394 (2)	5737 (1)	47 (1)*

* Equivalent isotropic U defined as one third of the trace of the orthogonalized $U_{i j}$ tensor.

Table 2. Bond lengths (\AA) and bond angles $\left({ }^{\circ}\right)$ with e.s.d.'s in parentheses

$\mathrm{O}(1)-\mathrm{C}(1) \quad 1.4$. 443 (3)	$\mathrm{O}(1)-\mathrm{C}(4) \quad 1.4$	$1.458(3)$
$\mathrm{C}(1)-\mathrm{C}(1 \mathrm{a}) \quad 1.53$. 530 (3)	$\mathrm{C}(1)-\mathrm{C}(2) \quad 1.5$	$1.525(3)$
$\mathrm{C}(1 \mathrm{a})-\mathrm{C}(4 \mathrm{a}) \quad 1.4$. 412 (3)	$\mathrm{C}(1 \mathrm{a})-\mathrm{C}(10 \mathrm{a}) \quad 1.3$	1.357 (3)
$\mathrm{C}(2)-\mathrm{C}(3) \quad 1.3$. 320 (4)	$\mathrm{C}(3)-\mathrm{C}(4) \quad 1.5$	1.527 (3)
$\mathrm{C}(4)-\mathrm{C}(4 \mathrm{a}) \quad 1.5$. 529 (3)	$\mathrm{C}(4 \mathrm{a})-\mathrm{C}(5) \quad 1.3$	1.374 (3)
$\mathrm{C}(5)-\mathrm{C}(6) \quad 1.4$. 439 (3)	$\mathrm{C}(5)-\mathrm{C}(11) \quad 1.507$	1.507 (3)
$\mathrm{C}(6)-\mathrm{C}(6 \mathrm{a}) \quad 1.3$. 371 (3)	$\mathrm{C}(6)-\mathrm{C}(\mathrm{i} 2) \quad 1.506$	1.506 (3)
$\mathrm{C}(6 \mathrm{a})-\mathrm{C}(7) \quad 1.5$. 538 (3)	$\mathrm{C}(6 \mathrm{a})-\mathrm{C}(10 \mathrm{a}) \quad 1.4$	1.416 (3)
$\mathrm{C}(7)-\mathrm{O}(7) \quad 1.4$. 452 (3)	$\mathrm{C}(7)-\mathrm{C}(8) \quad 1.5$	1.519 (3)
$\mathrm{O}(7)-\mathrm{C}(10) \quad 1.4$	1.446 (3)	$\mathrm{C}(8)-\mathrm{C}(9) \quad 1.32$	1.322 (3)
$\mathrm{C}(9)-\mathrm{C}(10) \quad 1.5$. 525 (3)	$\mathrm{C}(10)-\mathrm{C}(10 \mathrm{a}) \quad 1.5$	1.529 (3)
$\mathrm{C}(1)-\mathrm{O}(1)-\mathrm{C}(4)$	95.8 (2)	$\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{C}(1 \mathrm{a})$	99.3 (2)
$\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{C}(2)$	100.4 (2)	$\mathrm{C}(1 \mathrm{a})-\mathrm{C}(1)-\mathrm{C}(2)$	106.5 (2)
$\mathrm{C}(1)-\mathrm{C}(1 \mathrm{a}-\mathrm{C}(4 \mathrm{a})$	104.5 (2)	$\mathrm{C}(1)-\mathrm{C}(1 \mathrm{a}-\mathrm{C}(10 \mathrm{a})$	137.1 (2)
$\mathrm{C}(4 \mathrm{a})-\mathrm{C}(1 \mathrm{a})-\mathrm{C}(10 \mathrm{a})$	a) 118.4 (2)	$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	105.9 (2)
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	105.7 (2)	$\mathrm{O}(1)-\mathrm{C}(4)-\mathrm{C}(3)$	99.9 (2)
$\mathrm{O}(1)-\mathrm{C}(4)-\mathrm{C}(4 a)$	100.0 (2)	$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(4 \mathrm{a})$	106.4 (2)
$\mathrm{C}(1 \mathrm{a})-\mathrm{C}(4 \mathrm{a})-\mathrm{C}(4)$	103.5 (2)	$\mathrm{C}(1 \mathrm{a})-\mathrm{C}(4 \mathrm{a})-\mathrm{C}(5)$	123.9 (2)
$\mathrm{C}(4)-\mathrm{C}(4 \mathrm{a}-\mathrm{C}(5)$	132.7 (2)	$\mathrm{C}(4 \mathrm{a}-\mathrm{C}(5)-\mathrm{C}(6)$	117.7 (2)
$\mathrm{C}(4 \mathrm{a})-\mathrm{C}(5)-\mathrm{C}(11)$	121.6 (2)	$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{C}(11)$	120.7 (2)
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(6 \mathrm{a})$	117.5 (2)	$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(12)$	120.8 (2)
$\mathrm{C}(6 \mathrm{a})-\mathrm{C}(6)-\mathrm{C}(12)$	121.8 (2)	$\mathrm{C}(6)-\mathrm{C}(6 \mathrm{a})-\mathrm{C}(7)$	132.7 (2)
$\mathrm{C}(6)-\mathrm{C}(6 \mathrm{a}-\mathrm{C}(10 \mathrm{a})$) 123.7 (2)	$\mathrm{C}(7)-\mathrm{C}(6 \mathrm{a})-\mathrm{C}(10 \mathrm{a})$	103.6 (2)
$\mathrm{C}(6 \mathrm{a})-\mathrm{C}(7)-\mathrm{O}(7)$	100.0 (2)	$\mathrm{C}(6 \mathrm{a})-\mathrm{C}(7)-\mathrm{C}(8)$	105.7 (2)
$\mathrm{O}(7)-\mathrm{C}(7)-\mathrm{C}(8)$	100.1 (2)	$\mathrm{C}(7)-\mathrm{O}(7)-\mathrm{C}(10)$	95.8 (2)
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$	106.1 (2)	$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$	105.5 (2)
$\mathrm{O}(7)-\mathrm{C}(10)-\mathrm{C}(9)$	100.3 (2)	$\mathrm{O}(7)-\mathrm{C}(10)-\mathrm{C}(10 \mathrm{a})$	99.8 (2)
$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(10 \mathrm{a})$) 106.6 (2)	$\mathrm{C}(1 a)-\mathrm{C}(10 \mathrm{a})-\mathrm{C}(6 \mathrm{a})$	118.8 (2)
$\mathrm{C}(1 \mathrm{a}-\mathrm{C}(10 \mathrm{a})-\mathrm{C}(10)$	0) 137.0 (2)	$\mathrm{C}(6 \mathrm{a})-\mathrm{C}(10 \mathrm{a}-\mathrm{C}(10)$	104.1 (2)

and the anti disposition of the bicyclic rings produces a slight twisting of the aromatic ring. This distortion can be seen in the deviations from planarity of the atoms comprising this ring which range between 0.005 (5) \AA for $\mathrm{C}(4 \mathrm{a})$ to 0.14 (1) \AA for $\mathrm{C}(6)$. More noticeable are the non-zero torsional angles (1) for $\mathrm{C}(11)-\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(12)$ of $-2.4(3)^{\circ}$ and (2) for $\mathrm{C}(1)-\mathrm{C}(1 \mathrm{a})-\mathrm{C}(10 \mathrm{a})-\mathrm{C}(10)$ of $-7.0(5)^{\circ}$, and (3) about the ring diagonal $C(4)-C(4 a) \cdots C(6 a)-C(7)$
of 13.7 (6). The dihedral angles between $\mathrm{C}(1)$ -$\mathrm{O}(1)-\mathrm{C}(4)$ and the $\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$ and the $\mathrm{C}(1)-\mathrm{C}(1 \mathrm{a})-\mathrm{C}(4 \mathrm{a})-\mathrm{C}(4)$ mean planes are $126(1)^{\circ}$ and 122 (1) ${ }^{\circ}$, respectively, and that between $\mathrm{C}(1)$ -$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$ and the $\mathrm{C}(1)-\mathrm{C}(1 a)-\mathrm{C}(4 \mathrm{a})-$ $\mathrm{C}(4)$ mean planes is $112(1)^{\circ}$. The equivalent dihedral angles in the other bicyclic ring system are identical. Moreover, these values are the same as those we have observed (Kohnke, Stoddart, Slawin \& Williams, 1988a) for anti-1,4:5,8-diepoxy-1,4,5,8tetrahydroanthracene (4). However, it is interesting to note that there is a significant difference in bond lengths around the aromatic ring of $(\pm)-(2)$. Whilst

Fig. 2. (a) Ball-and-stick and (b) space-filling representation of the packing of a centrosymmetrically related enantiomeric pair of molecules (\pm)-(2).
the $\mathrm{C}(1 \mathrm{a})-\mathrm{C}(4 \mathrm{a}), \mathrm{C}(5)-\mathrm{C}(6)$ and $\mathrm{C}(6 \mathrm{a})-\mathrm{C}(10 \mathrm{a})$ bonds are 1.412 (3), 1.439 (3) and 1.416 (3) \AA long, respectively, the alternating $\mathrm{C}(4 \mathrm{a})-\mathrm{C}(5), \mathrm{C}(6)-$ $\mathrm{C}(6 \mathrm{a})$, and $\mathrm{C}(1 \mathrm{a})-\mathrm{C}(10 \mathrm{a})$ bonds are 1.374 (3), 1.371 (3) and 1.357 (3) A long, respectively, i.e. there is a pronounced alternation of the bond orders around the aromatic ring. This is in striking contrast to the bonding observed (Kohnke, Stoddart, Slawin \& Williams, $1988 a, b$) for the anti-1,4:5,8-diepoxy-1,4,5,8-tetrahydroanthracene (4) and its syn isomer (3) where the analogous bonds show no significant variations.

Inspection of the packing in (2) shows that (\pm)pairs of molecules, related by one of the crystallographic centres of symmetry are oriented such that one of the methyl substituents [$\mathrm{C}(11)$] in one molecule lies directly over the π face of the aromatic ring in the other at a distance of 3.69 (2) \AA from the ring centroid and vice versa. One of the methyl H atoms is directed towards the opposite aromatic ring plane and at a distance of $2.88(1) \AA$. More interesting is the arrangement (Figs. 2a,b) of the molecules about a different crystallographic symmetry centre which reveals pairs of weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions between one of the olefinic H atoms [attached to $\mathrm{C}(2)$] and the bridging oxygen atom $\mathrm{O}(7) ; \mathrm{C}(2) \cdots \mathrm{O}(7)$ is 3.28 (2) \AA. In isolation this interaction is weak but two such interactions, creating a pseudomacrocyclic superstructure, are probably significant in determining this packing arrangement.

We thank the Ministry of Defence and the Science and Engineering, and Agriculture and Food Research Councils in the UK, and the University of Messina in Italy, for financial support.

References

Ellwood, P., Mathias, J. P., Stoddart, J. F. \& Kohnke, F. H. (1988). Bull. Soc. Chim. Belg. 97, 669-678.

Hart, H. \& Shamoullian, S. (1981). J. Org. Chem. 46, 4874 4876.

Hart, H., Shamoullian, S. \& Takehira, Y. (1981). J. Org. Chem. 46, 4427-4831.
Kohnke, F. H., Mathias, J. P. \& Stoddart, J. F. (1989a). Angew. Chem. Int. Ed. Engl. 28, 1103-1110.
Kohnke, F. H., Mathias, J. P. \& Stoddart, J. F. (1989b). Molecular Recognition: Chemical and Biological Problems, edited by S. M. Roberts, pp. 223-269. Cambridge: The Royal Society of Chemistry.
Kohnke, F. H. \& Stoddart, J. F. (1989). Pure Appl. Chem. 61, 1581-1586.
Kohnke, F. H., Stoddart, J. F., Slawin, A. M. Z. \& Williams, D. J. (1988a). Acta Cryst. C44, 738-740.

Kohnke, F. H., Stoddart, J. F., Slawin, A. M. Z. \& Williams, D. J. (1988b). Acta Cryst. C44, 742-745.

Sheldrick, G. M. (1985). SHELXTL Users Manual. Revision 5.1. Nicolet XRD Co. poration, Madison, Wisconsin, USA.
Stoddart, J. F. (1988a). Nature (London), 334, 10-11.
Stoddart, J. F. (1988b). Chem. Br. 24, 1203-1208.
Stoddart, J. F. (1989). J. Incl. Phenom. 7, 227-245.

[^0]: * Permanent address: Dipartimento di Chimica Organica e Biologica dell'Università di Messina, Contrada Papardo, Salita Sperone, 98100 Messina, Italy.
 \dagger Present address: Department of Chemistry, Harvard University, Cambridge, Massachusetts 02138 , USA.
 \ddagger Permanent address: School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, England.

[^1]: * Lists of structure factors, anisotropic thermal parameters, torsion angles and H -atom parameters have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 54560 (13 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CHl 2HU, England. [CIF reference: HA0065]

